RMOP-GUI Manual

Espinoza H. and Coma M. and Cervello J.
December 17, 2012

Contents

1 Introduction 1

2 Pre-Processing 2
2.1 Polulation e 2
2.2 DesignBounds o o 2
2.3 Optimization o 3
2.4 Analyzer 4

3 Post-Processing 5
3.1 StatusIcons 6
3.2 Pareto Front Table 6
3.3 Pareto Front Graph, 6
3.4 Convergence History Graph 7

1 Introduction

RMOP, the Robust Multi-objective and Multidisciplinary Optimization Plat-
form, is a user-friendly and easy-to-use optimization tool. Based on the Hybrid
-games techniques developed by CIMNE researchers, it provides the best envi-
ronment for solving optimization problems. Fully compatible with all type of
solvers, RMOP provides an amazing optimization experience leading to optimal
results.

Now we describe basic concepts of optimization.

Optimization Problem: cosists in finding the design variables values such
that the objective functions values are optimum. By optimum we mean max-
imum or minimum. In RMOP we always pose the optimization problem as a
minimization problem, so we always want to minimize the objective functions.

Individual: it is a given simulation case and it is fully characterized by a
set of design variable values.

Design Variable: it is a value (real or integer) that modifies the behavior
of the individual in terms of the objective function values.

Objective Function: it is a real valued function. Its value represents how
good is an individual. In RMOP we always want to minimize the objective
function, so an individual with a lower value of the objective function will be
better.

RMOP is capable of dealing with an unlimited number of objective functions
and design variables. The RMOP Graphical User Interface (RMOP GUI) let
you define these two important parameters.

2 Pre-Processing

This section describes the pre-processing features of the Graphical User Interface
(GUI) of the Robust Multi-objective Optimization Platform (RMOP)

2.1 Polulation

Population] Design Bounds] Optimization] Analyzer]

Define Population and Generation pameters

Rand Buffers: 2
Population size: 10
Objectives: 2
Design Variables: 3

Define processors for the optimization

CPUs: 1

Figure 1: Population

Rand Buffers: it is a calculation buffer to evaluate individuals. Should be
greater than the population size

Population Size: it is the number of individuals in the population. Should
be an even number greater or equal than 2.

Objectives: it is the number of objective functions involved in the opti-
mization. These objective functions are going to be minimized.

Design Variables: it is the number of design variables to use in the opti-
mization.

CPUs: RMOP is designed to run in parallel, this field defines the number
of processors assigned to the optimizer.

2.2 Design Bounds

This part of the GUI let us inform the type of design variables: Integer or Real
and their bounds. The order in which the design variables are informed is im-
portant, because that is the order in which they are passed to the analyzer.

Population] Design Bounds] Optimization] Analyzer]
Add | Delete | Edit |
MowveDown | Movelp |
Dvn | Lowb. | upp.b. | IntReal [~
al 0.0 1.0 0
bl 0.0 2.0 1
cl 0.0 3.0 0

Figure 2: Design Bounds

Buttons Add, Delete and Edit let modify one design variable at a time. But-
tons Move Up and Move Down let change the order of appearance the design
variables. The Design Variable Identifier is just informative and is used only
within the GUI and the optimization project.

In figure 3 it can be seen the window that appears when you hit the add or
edit button. As can be seen, there you can choose the type of design variable
(integer or real), assign a identifier to it and its bounds.

~ Design Varialt -
 Integer
Real
DV identifier al
Lower Bound 0.0
Upper Bound 1.0
Accept | Cancel |

Figure 3: Design Bounds Window

2.3 Optimization
Game Strategy

e Pareto Game: uses the classical hierarchical multi-population Pareto
optimality.

e Hybrid Game (Pareto & Nash): uses a combination of Pareto and
Nash game strategies. It consists in one Pareto Player and many Nash
Players and can produce a Nash-equilibrium and Pareto non-dominated
solutions simultaneously

Optimization Method

e Genetic Algorithm (GA): uses a modified version of the Non-domitated
Sorting Genetic Algorithm IT (NSGA-II)

Population] Design Bounds] Optimization] Analyzer]
Game Strategy
@ Pareto Game
™ Hybrid-Game (Pareto & Nash)
Choice of optimization method
@ Genetic Algorithm
“ Particle Swarm Optimisation
Choice of optimization progress monitering

“ Live Progress
@ Update to File

Figure 4: Optimization

e Particle Swarm Optimization (PSO): this algorithm treats each in-
dividual in the population as a particle, then it moves each particle in the
search space to a given position and with a certain velocity (thereby the
name of swarm). The swarm moves to local minima and search for other
minima if there are better ones.

Choice of Optimization Progress

e Live progress: does the same as Update to file and additionally it shows
a pop-up window with a live progress of the optimization.

e Update to file: logs all the outputs from the analyzer and RMOP to a
file named HPRMOP.log located in the project directory.

2.4 Analyzer

Analyser file The analyser is an executable file (in Windows it can be a .bat
or .exe file, in Linux it can be a .sh or binary executable). It is in charge of
evaluating one individual. It will be called several times by HPRMOP in order
to evaluate one individual for a given set of design variables. Finally, it will write
the file Eval.individual which contains the values of the objective functions for
that individual.

Termination Criteria Stablishes the criteria to stop the optimization process.
Function evaluation: the optimization process will stop when a given number
of function evaluations is reached. It represents the number of individuals to be
analysed during the optimization process.

Elapsed Time: the optimization process will stop when it has run during
the specified period of time. Using this criteria you will know exactly when the
optimization will finish, independently of the number of function evaluations or
the value reached by the objective functions.

Population] Design Bounds] Optimization] Analyzer]
—Analyser File
~ python file (Analyser.py)
PreCompiled Software: IAnaIyser

—Termination Criteria

“ Function Ewvaluation
Elapse Time (Hours)
 Pre-defined Value (Objective 1)

Termination Value: 1

—Essential Files

Number of Essential Files
Add | Delete | Edit
D | Essential File Names |
0 filel
i file2

lL P

Figure 5: Analyzer

Pre-defined Value: the optimization process will stop when the objective
function reaches a given value. This criteria might lead to an infinite opti-
mization process. If you want to stop the optimization you can hit the stop
button.

Termination Value: it is either the number of function evaluations (integer),
the elapsed time in hours (real) or the pre-defined value (real)

Essential Files Essential files are files needed in the CPU working folder by
the Analyser in order to run a case. For example: geometry files (when geometry
is not optimized), data files not modified during optimization, etc. All essential
files must be in the project folder, then HPRMOP will copy them to each of the
CPU working folders.

3 Post-Processing

This section describes the post-processing features of the Graphical User Inter-
face (GUI) of the Robust Multi-objective Optimization Platform (RMOP)

Figure 6: Status Icons

3.1 Status Icons

These icons show the status of the optimization. RMOP GUI starts with the
first icon. When you launch the calculation it changes to the second icon and
automatically switches back to the first icon when the optimization finishes.
When the optimization is running (second icon) you can always stop it and the
icon will switch to the third one.

3.2 Pareto Front Table

—Pareto Front:

Display | Zoom In |
D | f1 | f2 | dvs1 [~
4] 1.00e+00 2.00e+00 5.03e-06
1 1.15e+00 1.98e+00 1.51e-01
2 1.26e+00 1.93e+00 2.63e-01
3 1.60e+00 1.64e+00 5.97e-01
4 1.67e+00 1.55e+00 6.68e-01
5 1.74e+00 1.46e+00 7.36e-01
G 1.79e+00 1.38e+00 7.89e-01
7 1.91e+00 1.18e+00 9.06e-01
8 1.98e+00 1.04e+00 9.80e-01
9 2.00e+00 1.00e+00 9.98e-01
= M

Figure 7: Pareto Front Table

The Pareto Front Table contains numerial data of the Pareto Front. This
table has three main columns and each row represents one individual that be-
longs to the Pareto Set. The first column is an identification of the individual,
for example ID=0 is the individual with the best value of the Objective Func-
tion 1. The second column has as many sub-columns as objective functions. It
contains the values of the objective functions. The third column has as many
sub-columns as design variables. It contains the design variables values charac-
terizing a given individual.

3.3 Pareto Front Graph

It is a graphical representation of the Pareto Set and known as Pareto Front or
Pareto Frontier. Given an optimization problem with two objective functions,
it is an easy way to asses the solution obtained. For optimization problems with

—Pareto Front

Fareto Front

e)
o R Lo e D0 00w

1 11 12 13 14 15 16 17 18 19 2
i1

X value: 1 2 v value: 2 % Baseline

Figure 8: Pareto Front

more than two objective functions, the user can choose the obective function to
plot in each axis and replot as desired.
Clicking over the graph opens a bigger graph for easier visualization.
Additionally, a baseline design can be added to the Pareto Front Graph by
clicking in the Baseline button. A window as shown in figure 9 appears where
you can enter the information. Check the box and refresh the plots to view the
baseline design plotted.

> Baseline Desig& -
[Display Baseline

Objective Function 1 value: 1.0

Objective Function 2 value: 1.0

Figure 9: Baseline Design in Pareto Front Graph

3.4 Convergence History Graph

It is a graphical representation of the evolution of the optimization as a function
of the number of individuals evaluated. The convergence history graph lets the
you know how the optimization problem is converging to the optimal solution.

Let us suppose you are solving an optimization problem and you just put a
long time for it to run. After some time you realize the problem is not converging
and you need to stop and check what is going wrong. On the other hand, you
might realize the problem has converged quite a lot and it is not converging
anymore, so you might want to stop.

Clicking over the graph opens a bigger graph for easier visualization.

—Convergence History:

Convergence History

1.035

1.03

1.025

1.02

- 1.015
1.01

1.005

Objective Function 1

(K1Y

Figure 10: Convergence History

