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Abstract— The shielding effectiveness of metal braids of cables is 
governed by the geometry and the materials of the braid. The 
shielding effectiveness can be characterised by the transfer 
impedance of the metal braid. Analytical models for the transfer 
impedance contain in general two components, one representing 
diffusion of electromagnetic energy through the metal braid, and 
a second part representing leakage of magnetic fields through the 
braid. The second part is a local phenomenon, which again has 
two parts: hole inductance and braid inductance. The paper will 
improved the analytical modelling of leakage of magnetic fields 
through the braid. Results of simulations are compared with 
measurements of several metal braids having different 
geometries.  
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I.  INTRODUCTION ) 

The shielding effectiveness of metal braids of cables is 
governed by the geometry and the materials of the braid. A 
close-up of a typical metal braid is shown in Figure 1. The 
shielding effectiveness can be characterized by the transfer 
impedance of the metal braid. The transfer impedance can be 
calculated for a range of frequencies by appropriate analytical 
models or advanced numerical finite element models. The 
objective of this paper is to improve the analytical calculation 
of the transfer impedance of braided cable shields. Starting 
points are the analytical models of [1] and [2] and the semi-
empirical models of [3]. The transfer impedance is used in the 
HIRF certification process to determine the common mode 
voltage in the cable due to the current flowing through the 
shield. 

 

Figure 1 Close-up of metal braid 

 

II. DESCRIPION OF METAL BRAIDS 

A metal braid is completely described by 6 parameters (see 
Figure 2 and Figure 3). These parameters are: 

• Diameter D of braid (real number, dimension meters) 
• Number of carriers C (i.e. belts of wires) in the braid 

(integer number) 
• Number of wires N in a carrier (integer number) 
• Diameter d of a single wire (real number, dimension 

meters) 
• Conductivity σ  of the wires (real number, dimension 

S/m) 
• Weave angle α  of the braid (real number, degrees) 

 

 
Figure 2 Metal braid for cable (diameter of braid is D) 

 
 

 
Figure 3 Characteristics of metal braid 



III.  AVAILABLE ANALYTICAL MODELS 

Analytical models for calculation of the transfer impedance 
contain in general two components, one part (dZ ) representing 

diffusion of electromagnetic energy through the metal braid, 
and a second part (j Mω ) representing leakage of magnetic 
fields through the braid  

 t dZ Z j Mωυ= +    (1) 

 
with υ  the number of holes per unit length . The diffusion 
component dZ of the metal braid is governed by the DC 

resistance of the metal braid and diffusion of waves through the 
wall of the cylindrical braid. Following Ref [1] the diffusion 
can be computed by  

 
0 sinhd

d
Z R

d

γ
γ

=     (2) 

 
where d is the thickness of the wires in the metal braid, and γ  
is the complex propagation constant of the wires 
( (1 ) /jγ δ= + , with δ  the skin depth of the wire, 

2 /δ ωµσ= ). The resistance 
0

R  is computed per unit length. 

The DC resistance 
0

R  is governed by the conductivity σ  and 

the averaged cross section of the braid. With reference to [1] 
the resistance per unit length reads  
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The second term of (1) is governed by the inductance of 
magnetic fields through the apertures in the metal braid. The 
inductance is a local phenomenon. Expressions for the 
inductance can be derived by considering the inductance 
through a single aperture and then superimposing the 
contributions of all apertures. Hence, the interaction of induced 
magnetic fields through neighboring apertures is usually 
neglected. In general, the inductance has two parts: hole 

inductance and braid inductance. The hole inductance hM is 

caused by penetration of magnetic fields through the rhombic 
apertures in the metal braid (see Figure 3), while the braid 
inductance bM arises from the woven nature of the braid. In 

the semi-empirical models as described by [3] a third 

inductance term is introduced, the skin inductance sM , which 

is due to eddy current in the walls of the rhombic apertures. In 
summary, the inductance M in equation (1) is the 

superposition of the hole inductance hM , braid inductance 

bM and skin inductance sM , 

h b sM M M M= + +   (4) 

In the analytical model of Ref [1] only the hole inductance 
through the rhombic apertures of a thin braid is considered. 

Here, the braid inductance and skin inductance are neglected 

0b sM M= = . 

The main improvement of the analytical models of Vance 
(see [1] and [2]) and the semi-empirical formulas of Kley [3] 
are discussed below. The detailed electromagnetic analysis of 
the formulas of Vance will provide a more correct model for 

the hole inductance term hM . The semi-empirical formulas of 

Kley are discussed with respect to analytical approaches as 
presented by Tyni [4]. The semi-empirical formulas of Kley 
were derived for a class of optimized single-braided cable 
shields by adjusting the parameters to measured data of a batch 
of samples. The formulas are approximations of the basic 
models of Tyni [4]. 

IV.  IMPROVEMENT OF HOLE INDUCTANCE  

In Ref [1] the hole inductance is calculated by 
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with m  the magnetic polarizability of one rhombic hole. This 
model has been adapted by Kley [3], where the thickness and 
the curvature of the braid are considered. Therefore, in Ref [3] 
the hole inductance is calculated by 
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The factor 0.875 in equation (6) takes into account the 

curvature of the braid. The outer diameter 
m

D of the braid is 

approximated by 2
m

D D d= + . The effect of the wall thickness 

of the braid is taken into account by multiplying the right-hand 
side of (5) with an attenuation factor exp( )τ− due the so-

called “chimney” effect. Referring to [3] the factor τ in the 
exponent of (6) reads  

 
2 239.6 (2 ) / mF F F d Dτ = −  (7) 

 
where F is the fill of the braid 
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For several typical metal braids the attenuation factor 
exp( )τ− has been calculated to be between 0.08 and 0.21. 
Hence, the so-called “chimney” effect reduces the magnitude 
of the hole inductance considerably.  

As follows from equations (5) and (6) the hole 
inductance increases linearly by the value of the magnetic 
polarizability m of the rhombic hole. For small apertures in 
zero-thickness walls the magnetic polarizability has been 
discussed in Ref [7] and [8]. In these papers it was shown that 

the symmetric magnetic polarizability m dyadic can be written 
as 



3/2( )mx x x my y ym S u u u uν ν= +  (9) 

where S the surface of the aperture, and mxν  and myν are 

dimensionless normalized magnetic polarizabilities along the 
principal axes of the dyadic. Notice that the magnetic 

polarizability m dyadic has typical length scale cubed. 
Furthermore, it was shown in Ref [8] that the dimensionless 
magnetic polarizabilities of elliptical and rhombic apertures are 
almost equal. For elliptical apertures the dimensionless 
magnetic polarizabilities are given by 
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In the above formulas e  is the eccentricity of the ellipse, 

21 ( / )e w l= −  (with l  major axis and w the minor axis), 

and ( )K e  and ( )E e  are the complete elliptical integrals of the 
first and second kind.  

The magnetic polarizabilities of the rhombic apertures of 
the metal braids follow now from equations (9) to (11). For 
weave angles α  larger than 45 degrees the magnetic fields due 
to a current along the axis are parallel to the x-axis. For this 
case, the magnetic polarizability reads 

3/2
x r mxm S ν=  (12) 

with rS the surface of the rhombic aperture, 

/ 2rS lw=  (13) 

For weave angles α  smaller than 45 degrees the magnetic 
fields due to a current along the axis are parallel to the y-axis. 
For this case, the magnetic polarizability reads 

3/2
y r mym S ν=  (14) 

However, in Ref [1] and [3] the magnetic polarizabilities of 
rhombic apertures are approximated by magnetic 
polarizabilities of equivalent elliptical apertures. More exactly, 
in Ref [1] and [3] the surface of an elliptical hole with area 

/ 4eS lwπ=  (15) 

is applied in equation (9). As a consequence, the values of the 
magnetic polarizabilities are overestimated in Ref [1] and [3]. 
The surfaces of the rhombic apertures should be used in 
equations (12) and (14), and not the surface areas of the 
elliptical holes. Hence, with reference to equations (12) and 
(14) the overestimate factor amounts 

3/2 3/2( / ) (2 / ) 0.5079r eS S πΓ = = =  (16) 

As a consequence, the hole inductance formulas of Vance 
by equation (5) and Kley by equation (6) should be reduced by 
a factor 0.5079Γ = . Thus, the improved formula for the hole 
inductance becomes 
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V. BRAID INDUCTANCE 

The modeling of the braid inductance has been discussed in 
references [4], [5] and [6]. The braid inductance is caused by 
magnetic flux linkage between the inner and outer braid layers 
due to the woven structure of the braid. The principle of this 
flux linkage is shown in Figure 4. These figures show the 
representation of the flux area between the spindles of the 
braid.  

 

 
 

Figure 4 Representation of flux area in Tyni's model 

 
The area in Figure 4 was considered by [4] to derive the 

following formula for the braid inductance per unit length,  
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The average height ĥ  in formula (18) plays a crucial role in 
determining the values of the braid inductance Mb . It appears 

to be rather difficult to determine correct values for ĥ . With 

reference to [4] ̂h d≃ for dense braids. In loose braids, the 

layers can be close to each other and the value of ĥ  is smaller.  
 
Kley [3]applies the following approximate formula 
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The main difference between the braid inductance of [3] 

and [4] is the dependence on the weave angle α . By equation 
(18) Tyni [4] supposes that the braid inductance decreases by  

 
2ˆ( / ) (1 tan )Tm h dα α= −  (20) 



for increasing weave angles, while Kley assumes a decrease 
by a factor (see equation (19)) 
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The values of Tmα and Kmα are displayed in Figure 5 for 

ĥ d= and for fill factor F=0.8. Inspection of this figure reveals 
that Kley’s model (see equation (19)) reduces the effect of the 
braid inductance much more than Tyni’s model (see equation 
(18)) for weave angles less than 45 degrees. When we assume 
ˆ / 4h d= , then the values of Tmα  have to be reduced by a 

factor 0.25. Then, a much closer correlation is obtained for the 

factors Tmα and Kmα .  
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Figure 5 Calculation of 
T

mα
and Kmα

 for weave angles between  

30 and 60 degrees (fill factor F=0.8, ĥ d= )  

It can be concluded that the average height ĥ  in formula 
(18) is an important parameter that strongly determines the 
magnitude of the braid inductance. Tyni proposes the following 
formula for the average height, 

2ˆ
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+
 (22) 

with / (1 ) /b d N F F= − . For dense braids F is about 0.8 and 
typical values for the number of wires per carrier are N=5 to 
N=8. With these values b/d is between 1.25 and 2. It follows 

that the average height ĥ  in formula (22) ranges from 0.67d to 
0.89d. Notice that these values are much larger than d/4, which 
was required to achieve a close resemblance between the 

factors Tmα and Kmα . As a consequence, the proposition is that 

the braid inductance according to Tyni (as described by 
equations (18) and (22)) will yield higher values than Kley’s 
model (given by equations (19)).  

Notice that for weave angles 45oα <  the hole inductance and 
braid inductance oppose each other. Furthermore, in case the 
braid inductance is dominant over the hole inductance 

then( ) 0h bM M+ < , which will result in polarity change of 

the transfer impedance.  

VI.  COMPUTATIONAL TOOLS 

The transfer impedance will be calculated by three different 
tools. These tools are: 

1. Vance’s model, defined by equations (1), (2) and (5). 

2. Kley’s model, defined by equations (1), (2), (6) and 
(19) 

3. Our improved model, defined by equations (1), (2), 
(17), (18) and (19). This model will be referred as 
Beatrics in the following sections. 

VII.  RESULTS 

The braid inductances according to formulas (18) and (19)
have been computed for 19 different braid samples. The results 
are displayed in Figure 6, indicated by BTiny and BKley, 
respectively. Figure 6 contains also the values of the hole 
inductances by Vance (5), Kley (6) and the improvement by 
(17), which are indicated by MVance, MKley and MBea 
respectively in Figure 6. This figure shows that braid 
inductance dominates over hole inductance for most samples, 
and that braid inductance according to Tyni ((18) and (22)) 
yields a significant larger contribution than Kley’s model 
(equation (19)).  
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Figure 6 Values of hole inductances by Vance (5), Kley (6), Bea (17) and 
braid inductances by Tyni (18) and Kley (19). 

Inspection of Figure 6 reveals that the contribution of hole 
inductance is small (in comparison to braid inductance) for 
samples 2, 8 and 11. The calculated absolute values of transfer 
impedances of sample 8 are displayed in Figure 7, and 
compared with the outcome of measurements. The geometrical 
data of sample 8 are: D=6 mm, d=202 µm, N=7, C=24 and  

α=38.6 degrees. Figure 7 reveals a fair comparison between the 
outcome of the Beatrics tool and the measurements. Notice the 
Beatrics tool uses the braid inductance according to Tyni (18) 
with the average height defined by (22). Hence, for this sample 
the average height by (22) is appropriate. Furthermore, Figure 
7 shows that the tools of Vance and Kley underestimate the 
transfer impedance due to short of braid inductance. The 
phases of the calculated transfer impedances of sample 8 are 
displayed in Figure 8. 
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Figure 7 Transfer impedance of sample 8; Comparison of Vance,  
Beatrics and Kley tools with measurements 
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Figure 8 Phase of transfer impedances of sample 8 

 
Observe from Figure 8 that the phase behavior is different for 
the outcome of Vance’s tool and the other ones. Vance’s tool 
only contains a contribution from hole inductance, which is 
positive for all frequencies. In the other tools the braid 
inductance is dominant over the hole inductance (see Figure 

6). For this sample ( ) 0h bM M+ < , which results in a 

polarity change of the transfer impedance.  
 

Inspection of Figure 6 shows that samples 8 and 12 have 
similar values of braid inductance, while the values of hole 
inductance are different. For sample 12 the contribution of hole 
inductance is more substantial, at least of Vance’s tool. The 
geometrical data of sample 12 are: D=8 mm, d=202 µm, N=5, 

C=32 and α=35 degrees. The calculated and measured transfer 
impedances of sample 12 are displayed in Figure 9. Observe 
from the measured data that braid inductance is less significant 
for this sample. It is obvious that the contribution of braid 
inductance of the Beatrics tool is too high. Notice that the braid 

inductance increases linearly by the average height ĥ  by 
equation (18). Formula (22) predicts an average height of 0.73d 
for sample 12, which is too large. In Figure 10 the average 
height has been varied between 0.1d and 1.0d. From this figure 

it can be concluded that an average height of 0.25 d would 
have been appropriate for this sample, because for higher 
frequencies the measured data is contained between the curves 
of 0.2d and 0.3d.  
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Figure 9 Transfer impedance of sample 8; Comparison of Vance, 

Beatrics and Kley tools with measurements 
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Figure 10 Transfer impedance of sample 8 as calculated by Beatrics tool, 

where the average height ĥ  is varied between 0.1d and 1.0d.  

 
The main difference between sample 8 and sample 12 is the 
optical coverage. For sample 8 the optical coverage is 0.99, 
while for sample 12 it is 0.95. It could be that braids with 
lower optical coverage are more loose, so that the spindles of 
the braid are more close, which will result in a lower average 
height between the spindles. More knowledge of the 
manufacturing process of metal braids could also contribute to 
explaining differences in heights between spindles of braids. 
 

VIII.  CONCLUSIONS 

In this paper analytical models for the calculation of 
transfer impedance for metal braids have been considered. 

These models contain two components, one part (dZ ) 

representing diffusion of electromagnetic energy through the 
metal braid, and a second part (j Mω ) representing leakage 



of magnetic fields through the braid. The diffusion component 

dZ of the metal braid is governed by the DC resistance of the 

metal braid and diffusion of waves through the wall of the 
cylindrical braid. The inductance M in equation (1) is the 

superposition of the hole inductance hM , braid inductance 

bM and skin inductance sM . The diffusion component dZ is 

dominant at low frequencies; the hole inductance and braid 
inductance dominate at high frequencies. The skin inductance 
only yields a small contribution in the central region (between 
low and high frequencies). 

 

The analytical models of Vance (see ref [1]and [2]) and 
Kley [3] have been applied to a set of 19 sample braids. The 

diffusion component dZ  is calculated carefully by the models 

of Vance and Kley. However, the effects of inductance are not 
predicted accurately enough by these models. The transfer 
impedance of most samples is dominated by effects of braid 

inductance bM . The model of Vance neglects braid 

inductance at all. The braid inductance model of Kley (see 
equation (19)) contains semi-empirical parameters which have 
been adjusted by Kley to measured data of a set of optimized 
braids. The application of this model to the set of 19 samples as 
considered in this paper does not provide a fair correlation 
between simulations and NLR’s measurements. A more 
detailed modeling of braid inductance and detailed knowledge 
of cross sections of metal braids are required to resolve the real 
contribution of braid inductance.  
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