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Abstract - The transfer impedance of a cable shield is a parameter that
characterizes its shielding effectiveness. To calculate this parameter we can
use analytical or semi-empirical approaches but, in this work, the objective
is to adapt a general-purpose finite element formulation. The advantage of
a numerical method is that it can be applied to a wider variety of situa-
tions where complex geometries and materials may be present. To obtain
numerically the transfer impedance we first express it as a function of the
electric field and then we compute the field by means of the finite element
method. The only input data required in the process are the geometry and
the material properties of the shield. To validate our numerical model we
apply it to a few cable shields and compare the results of the simulations
with analytical models and measurements obtained from the literature.

1 Introduction

The transfer impedance Zt (also known as surface transfer impedance) char-
acterizes the quality of a cable shield. A lower transfer impedance indicates
a good shielding against interfering electromagnetic fields. This concept
was initially introduced by Schelkunoff in [1] and it is an intrinsic param-
eter that represents, independently of environmental factors, the shielding
effectiveness of a cable shield. Also, the measurement of Zt is relatively easy
to perform and the experimental setup provides accuracy and repeatability
(for a review of measurements methods see for instance [2]).

The knowledge of Zt is important because it determines the coupling of
interference to the wires inside the cable shield. An interference current will
be induced in the shield of a cable which is exposed to an electromagnetic
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field, either because the cable acts as an antenna or because the (grounded)
shield is part of a loop in which an interference voltage is induced. In the
latter case an interference current will flow depending on the impedance of
the loop. If the transfer impedance is known the common mode voltage
between the inner conductors and the shield can be determined. Therefore,
with the knowledge of Zt, we can estimate the effect produced by an external
field in the wires inside the cable, or reciprocally, we can also estimate the
radiation leaked from inside the cable to the environment.

A number of analytical and empirical approaches have been formulated
in the past to determine the transfer impedance of cable shields, specially to
the most usual arrangement based on braided metal wires [3–8]. The low and
medium frequency behavior of the transfer impedance (DC resistance and
skin depth) can be determined quite accurately with these models. However,
the behavior of the inductance of the metal braid is very complex. The
accuracy of the analytical and empirical models for the higher frequencies
in which the inductance plays an important role is sometimes poor. A
numerical approach might provide a higher accuracy especially for the high
frequency behavior. Also, it can be applied systematically to a wider variety
of situations where complex geometries and materials may be present.

The objective of this work is to develop a numerical model for the compu-
tation of the transfer impedance of cable shields. This numerical numerical
model is based on the finite element method (FEM). In the following sections
we explain how to apply a general-purpose finite element formulation to the
specific problem of computing Zt. Firstly, we obtain the electric field using
the finite element method. The input data of this process are the geometry
and the material properties of the shield. Secondly, we express the transfer
impedance as a function of the electric field. This is done re-expressing the
definition of Zt by means of some surface integrals. Finally, we integrate the
calculated electric field in these surfaces to obtain Zt.

The finite element method employed in this work is based on the regu-
larized Maxwell’s equations and uses nodal (Lagrangian) elements [9]. This
formulation is different from the most extended one based on edge elements
and the double-curl Maxwell’s equations (see [10,11] and references therein).
Although our finite element approach can be more complex to implement,
it has the advantage of producing well-conditioned matrices, even at low
frequencies, without the need of Lagrange multipliers. On the other hand,
our numerical model can be easily adapted to any other FEM formulation.
You only need to calculate the electric field with your preferred formulation
or a ”black-box” commercial software and then perform the surface integrals
defined in the following sections.
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Figure 1: Perforated tube with 22 circular holes per meter. Each hole has a
diameter dh = 3.175 mm. The thickness of the wall is T = 1.683 mm. The
external diameter of the tube is Dext = 15.875 mm. The tube is made of
brass with an electrical conductivity of σ = 13.32e6 S/m.

To validate our numerical model we calculated the transfer impedance
of a few cable shields and compared the results of the simulations with ana-
lytical methods and measurements obtained from the literature. The shield
configurations selected here for comparing simulations with measurements
are perforated tubes. The reason for this selection is that the usual braided
wire shields present some uncertainties which can hinder the validation pro-
cess. This uncertainties are due mainly to the contact impedance between
adjacent and porpoising wires or changes in the properties because of aging
and handling [12]. The objective of the present paper is to show that our
finite element model can give accurate results. It is left for a future work
the application of the numerical model to the study of braided wires shields.
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Figure 2: Detail of the geometry of the shield shown in fig. 1. This ge-
ometrical set-up was used to compute the electric field with FEM. In the
two transversal surfaces is applied a perfect electric conductor boundary
condition (PEC). In the longitudinal surface is applied a perfect magnetic
boundary condition (PMC). In the exterior curved surface is applied a first
order absorbing boundary condition (1st ABC). The problem is driven by a
volumetric current density Jz located along the central axis of the shield.
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Figure 3: Geometry of the shield of a standard RG 58 coaxial cable tinned
(section 4.3). This cable shield was modeled as a perforated tube with rhom-
boidal holes. The thickness of the shield is T = 2d, being d the diameter
of the wires of the braid (d = 0.12 mm). The external diameter of shield is
Dext = 3.5 mm. The braid angle is θ = 32.32o. The numbers of carriers is
C = 16 and the number of wires in each carrier is N = 7. The electrical
conductivity is σ = 32.4e6 S/m, which is the average between the conduc-
tivity of copper given in [13] (σ = 56e6 S/m) and the conductivity of tin
(σ = 8.8e6 S/m [14]).
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Figure 4: Geometry of the shield of a standard RG 58 coaxial cable tinned
(section 4.3). This cable shield was modeled as a perforated tube with
rhomboidal holes. In the areas where the carriers of the braid overlap each
other the thickness of the shield is T = 2.5d [15], being d the diameter of
the wires of the braid (d = 0.12 mm). In the areas where the carriers of the
braid do not overlap each other the thickness of the shield is T = 1.5d. The
external diameter of shield is Dext = 3.5 mm. The braid angle is θ = 32.32o.
The numbers of carriers is C = 16 and the number of wires in each carrier is
N = 7. The electrical conductivity is σ = 32.4e6 S/m, which is the average
between the conductivity of copper given in [13] (σ = 56e6 S/m) and the
conductivity of tin (σ = 8.8e6 S/m [14]).

6



Figure 5: Detail of the geometry of the shield shown in fig. 4. This geo-
metrical set-up was used to compute the electric field with FEM. In the two
transversal surfaces is applied a perfect electric conductor boundary condi-
tion (PEC). In the two longitudinal surfaces is applied a perfect magnetic
boundary condition (PMC). In the upper curved surface is applied a first
order absorbing boundary condition (1st ABC). The problem is driven by a
volumetric current density Jz located along the central axis of the shield.
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Figure 6: Minimum portion of the shield shown in fig. 3 necessary to com-
pute its transfer impedance. If we know the value of the electric field E in
the surfaces Se and Si we can compute Zt. We must integrate Ez over Se to
obtain the longitudinal electric field averaged over the outer surface of the
shield and J = σE over Si to obtain a sixteenth of the total induced elec-
tric current going through the shield. We have only a sixteenth of the total
electric current because Si is a sixteenth of the whole transversal section of
the geometry in fig. 3. Therefore, to calculate the total current, we must
multiply by sixteen the value of the integral (3). On the other hand, the
integral (2) does not need such a multiplication. Performing the integral (2)
over the surface Se give us the same result as if we performed the integral
over the whole outer surface of the shield.
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2 Definitions

The transfer impedance Zt (Ohms/meter) of a cable shield is defined as [1,3]

Zt =
1
I0

∂V

∂z
(1)

where I0 is the current flowing through the shield induced on its outer surface
and ∂V/∂z is the voltage per unit length on the inside of the shield.

Definition (1) can be re-expressed as a function of the electric field by
means of the relations

∂V

∂z
=

1
Ae

∫∫
Se

Ez dSe (2)

and
I0 =

∫∫
Si

σE dSi, (3)

where E is the modulus of the electric field, Ez is the modulus of the longi-
tudinal component of the electric field, Se is the inner surface of the cable
shield, Si is its transversal surface, Ae is the area of Se and σ is the electrical
conductivity of the shield. Equation (2) represents the transversal electric
field averaged over the inner surface of the shield and equation (3) represents
the induced current going through it.

The transfer impedance can also be defined, by reciprocity, as the ratio
between the voltage per unit length on the outer surface of the shield and
the current flowing through the shield induced on its inner surface [12]. In
this last case, Se is the outer surface of the cable shield and (2) represents
the transversal electric field averaged over its outer surface (see fig. 6).

3 Numerical Model

It is clear from relations (2) and (3) that, in order to obtain Zt, we need first
to compute the electric field. In this section we explain how to do it. First,
we give a brief summary of the general finite element formulation used in
this work, and next, we show how to adapt this formulation to the specific
problem of computing the transfer impedance.

3.1 Finite Element Formulation

In this subsection we give a brief summary of the finite element formulation
we utilized to compute the electric field. A more detailed explanation can
be found in [9].
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In our numerical model we solve the weak form of the regularized Maxwell’s
wave equation [16], that is, if we define

H (curl,div; Ω) :={
F ∈ L2 (Ω) |∇ × F ∈ L2 (Ω) ,∇ · (εF) ∈ L2 (Ω)

}
,

(4)

where L2 (Ω) is the space of square integrable functions in the domain Ω and
L2 (Ω) the space of vectorial functions with all its components belonging to
L2 (Ω) then, solving the weak form of the regularized Maxwell’s wave equa-
tion consists in finding E ∈ H (curl,div; Ω) such that, ∀F ∈ H (curl,div; Ω)
holds ∫

Ω

1
µ

(∇×E) ·
(
∇× F̄

)
+
∫
Ω

1
µεε̄

(∇ · (εE)) ·
(
∇ ·

(
ε̄F̄
))
− ω2

∫
Ω

ε
(
E · F̄

)
−
∮

∂Ω

1
µ

(∇×E) ·
(
n̂× F̄

)
−
∮

∂Ω

1
µεε̄

(∇ · (εE)) ·
(
n̂ ·
(
ε̄F̄
))

= −jω

∫
Ω

J · F̄,

(5)

where Ω is the problem domain, ∂Ω is the boundary of Ω, n̂ is the exterior
unit normal of the boundary ∂Ω, E is the electric field, ω is the angular
frequency, J is the current density, µ is the magnetic permeability and ε
is the electric permittivity (ε = ε− jσ/ω). The bar over the magnitudes
denotes the complex conjugate.

It is shown in [16] that, analytically, solving the regularized weak for-
mulation (5) is completely equivalent to solving the classical time-harmonic
Maxwell’s wave equation. However, we must be careful when solving (5)
numerically with nodal (Lagrangian) finite elements. If the electric field E
is singular at some point of the domain, the analytical solution obtained
from the classical Maxwell’s equations (the physical solution) can not be
approximated with nodal elements and (5), no matter the element size or
the polynomial order used in the discretization [17–19].

To avoid this known problem we remove the divergence term of (5) (the
first term on the second line) from the elements which are near the points
of the domain where the electric field is singular [9]. In our case, these
points are the edges and corners of dielectrics or electric conductors and
the intersection of several dielectrics or electric conductors [20]. In [9] is
shown that for tetrahedral second order nodal elements we need three lay-
ers of these special elements around the singularity to obtain good results.
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This procedure is a simplification of the weighted regularized Maxwell equa-
tion method [21]. In [22, 23] the same strategy is followed for quasi-static
problems.

We also consider explicitly the discontinuities of the normal component
of the electric field at the interface between different media. At a surface
separating two different materials is used the double-node technique given
in [24]. For the general case of the intersection of three or more different
materials we follow the procedure explained in [9].

This FEM formulation had been implemented in a C++ code called
ERMES (E lectric Regularized M axwell Equations with S ingularities). ER-
MES had been applied successfully to microwave engineering [25], specific
absorbtion rate computations [26,27] and to the determination of the mag-
netic pressure and induced eddy currents in electromagnetic sheet metal
forming [28]. For geometric modeling, meshing, and visualization of results
is used the commercial software GiD [29].

3.2 Finite Element Model for Computing Zt

In this subsection we explain how to adapt the finite element formula-
tion presented above to the specific problem of computing the transfer
impedance. That is to say, we are going to describe the boundary conditions
and the sources employed in our numerical model.

The first step to calculate the electric field is to take a portion of an
infinitely long cable shield (see fig. 1 and fig. 2 or fig. 4 and fig. 5). Thanks
to the special characteristics of our problem we only need to compute the
electric field in a portion of the shield. The only requirement to select
this portion is that it must have the capacity to generate the whole shield
geometry after applying consecutively a mirror symmetry at its faces.

To obtain Zt we can induce a current in the shield by means of an exterior
field coming from the outside and take the electric field on its internal surface
or, by reciprocity, we can induce a current by means of a field coming from
the inside and take the electric field on its exterior surface. These two ways
of solving the problem are completely equivalent [12]. We have selected
the second option. Therefore, we produce an incoming inner field by a
longitudinal current density Jz placed along a centered inner cylinder (see
fig. 2 or fig. 5).

As a boundary conditions (see fig. 2 or fig. 5), we impose on the top
surface a first order absorbing boundary condition (1st ABC) adapted to
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the regularized formulation [16]

n̂×∇×E = −jω
√

ε0µ0 (n̂× n̂×E) ,

∇ ·E = −jω
√

ε0µ0 (n̂ ·E) ,
(6)

where ε0 and µ0 are, respectively, the electric permittivity and the mag-
netic permeability of vacuum. On the longitudinal surfaces we impose the
regularized perfect magnetic conductor (PMC) condition [16]

n̂×∇×E = 0,

n̂ ·E = 0.
(7)

Finally, on the transversal surfaces we impose the regularized perfect electric
conductor (PEC) condition [16]

∇ · (εE) = 0,

n̂×E = 0.
(8)

The application of these boundary conditions is possible thanks to the pe-
culiar symmetry of the electric field in the perforated tubes geometries. The
PEC condition indicates that the field is normal to the transversal surfaces
and the PMC condition represents that the field is parallel to the longitudi-
nal surfaces. The expressions (6), (7) and (8) guarantee that the regularized
problem (5) is well-posed, as it is demonstrated in [16].

On the other hand, the conditions (7) and (8) are not longer applicable
when modeling braided wires geometries. In that case we must use periodic
boundary conditions. Also, the minimum portion of geometry necessary
to compute the transfer impedance is different. This portion must have
the capacity to generate the whole braided wire geometry after applying
successive translation symmetries in the transversal surfaces and successive
rotation symmetries in the longitudinal faces of the problem domain. This
model will be the topic of future work.

Summarizing, in the case of perforated tubes shields, we are solving the
problem of finding E ∈ H0 (curl,div; Ω) such that, ∀F ∈ H0 (curl,div; Ω)
holds ∫

Ω

1
µ

(∇×E) ·
(
∇× F̄

)
+
∫
Ω

1
µεε̄

(∇ · (εE)) ·
(
∇ ·

(
ε̄F̄
))
− ω2

∫
Ω

ε
(
E · F̄

)
+ jω

√
ε0
µ0

∫
∂Ωr

(
E · F̄

)
= −jω

∫
Ω

J · F̄,

(9)
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being ∂Ωr the surface where the 1st ABC condition has been applied and
H0(curl,div; Ω) the functional space defined by

H0 (curl,div; Ω) :=
{F ∈ H (curl,div; Ω) | n̂× F = 0 in PEC,

n̂ · F = 0 in PMC }.
(10)

To find the numerical solution of this problem we employed ERMES, the
in-house finite element code mentioned in the previous subsection.

Once E is known, we must return to the equations (2) and (3) to obtain
Zt. The integration surfaces Se and Si are shown in fig. 6. Se is the surface
just above the shield and also includes the holes. Si can be the forward or
the backward surface in fig. 6. A third option to calculate (3) consists in
doing the integration over the forward and over the backward transversal
surfaces and then perform the geometric average between these two values.
We must recall that the surface Si shown in fig. 6 is only a fraction of
the whole transversal section of the shield. Therefore, to calculate the total
intensity flowing through the shield, which is the magnitude required in
(1), we must multiply (3) by the number of times required to recover the
whole transversal section. For instance, in the case shown in fig. 6, which
represents a sixteenth of the whole geometry of fig. 3, we have to multiply
(3) by sixteen. On the other hand, the integral (2) does not need such a
multiplication. Performing the integral (2) over the surface Se of fig. 6
give us the same result as if we performed the integral over the whole outer
surface of the shield.

4 Validation

In this section we apply our numerical model to some cable shield configu-
rations: a homogeneous tube, four different perforated tubes with circular
holes and to a standard RG 58 coaxial cable tinned. As mentioned in the in-
troduction of this paper, we have selected these configurations because they
present less uncertainties than the usual configurations based on braided
wires. It is left for a future work the application of the present numerical
model to the study of the transfer impedance of braided wires shields.

To find the numerical solution of the problems shown here we employed
the C++ code called ERMES. This code implements the finite element for-
mulation described in the previous section. We used isoparametric tetrahe-
dral second order nodal elements and the resulting linear system was solved
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Figure 7: Transfer impedance of a stainless steal tube with an internal radius
rint = 3.625 mm, wall thickness T = 0.91 mm and electrical conductivity
σ = 1.1e6 S/m. Analytical results from [30]. Measurements from [31].
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Figure 8: Transfer impedance of the perforated tube shown in fig. 1
(υ = 22 holes/meter, dh = 3.175 mm, Dext = 15.875 mm, T = 1.683 mm
and σ = 13.32e6 S/m). Analytical results from Vance [30] and Kley [7].
Measurements from [32].
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Figure 9: Transfer impedance of three copper tubes with 1 circular hole
per meter. The diameter of the hole in each tube is, respectively, dh =
15.875 mm, dh = 9.525 mm and dh = 6.350 mm. All three tubes have the
same external diameter Dext = 31.750 mm and the same wall thickness T =
1.504 mm. It is considered an electrical conductivity for copper of σ =
58e6 S/m [14]. Measurements (•,N,�) from [32].
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Figure 10: Transfer impedance of two of the three copper tubes shown in fig.
9. The two tubes selected are those with the maximum and the minimum
hole diameter (dh = 15.875 mm and dh = 6.350 mm). Analytical results
from Vance [30] and Kley [7]. Measurements (•,�) from [32].
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Figure 11: Transfer impedance of the shield of a standard RG 58 coaxial
cable tinned. This cable shield was modeled as the perforated tube shown
in fig. 3 (Dext = 3.5 mm, d = 0.12 mm, T = 2d, θ = 32.32o, C = 16,
N = 7 and σ = 32.4e6 S/m). Analytical results from Vance [3] and Kley [7].
Measurements from [13].
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Figure 12: Transfer impedance of the shield of a standard RG 58 coaxial
cable tinned. For the analytical computations with the formulas of Vance [3]
and Kley [7] the shield was modeled as the perforated tube shown in fig. 3,
but with the values: Dext = 3.5 mm, d = 0.12 mm, T = 2.5d, θ = 32.32o,
C = 16, N = 7 and σ = 32.4e6 S/m. For the simulations with ERMES the
shield was modeled as it is shown in fig. 4. Measurements from [13].
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using a quasi-minimal residual (QMR) iterative solver [33] with a diago-
nal preconditioner. In all the simulations performed the convergence of the
solver was excellent, proving the well-conditioning of the matrix. In aver-
age, it were used around 200000 tetrahedral second order nodal elements
which produced a linear system with about 600000 unknowns. Around 700
iterations of the solver were necessary to reach a residual (‖Ax− b‖ / ‖b‖)
of less than 1e-4. The memory employed was approximately 1 GB and the
time spent solving each frequency was around 400 seconds. These data are
referred to a desktop computer with a CPU Intel Core 2 Quad Q9300 at 2.5
GHz and the operative system Microsoft Windows XP.

4.1 Homogeneous tube

In fig. 7 is shown the transfer impedance calculated with ERMES for a
stainless steal tube with an internal radius rint = 3.625 mm, wall thickness
T = 0.91 mm and electrical conductivity σ = 1.1e6 S/m.

For a homogeneous tube only current diffusion is important and the
values of Zt are due to DC resistance modified by skin-effect screening. In
this case, an analytical solution can be obtained from the formula given
in [30]

Zt =
γ

σ2πa

(
1

sinh (γ T )

)
, (11)

where γ = jω
√

µ (ε− jσ/ω) is the propagation constant in the shield ma-
terial, σ is the conductivity of the shield, T is its thickness and a is its
mean radius (a = rint + T/2). The analytical results were computed using
a = 4.08 mm, T = 0.91 mm and σ = 1.1e6 S/m.

The measurements shown in fig. 7 were performed in [31]. The shield
configuration consisted in the core (inner conductor plus dielectric) of a
URM 67 cable with a solid stainless steel outer conductor 0.91 mm thick.
In [31] is assumed an electrical conductivity of 0.8e6 S/m for stainless steel
at room temperature. This figure is too low compared to the values found in
the literature (see for instance [14] or [34]). We adopted the more reasonable
value of σ = 1.1e6 S/m for the simulations and the analytical calculations.
Using σ = 0.8e6 S/m gives the same Zt with ERMES and (11) but the
graphs are displaced upwards to respect the measurements in [31]. The
numerical results of fig. 7 were obtained considering vacuum in the core
of the tube. Nonetheless, simulations performed with ERMES adding a
dialectic (polyethylene, εr = 2.3) produced the same values of Zt that the
ones shown in fig. 7.
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4.2 Perforated tubes with circular holes

Four different configurations of perforated tubes were simulated with ER-
MES. The first one, shown in fig. 1, has 22 circular holes per meter, each
hole with a diameter dh = 3.175 mm. The external diameter of the tube
is Dext = 15.875 mm and the thickness of the wall is T = 1.683 mm. The
tube is made of brass with an electrical conductivity of σ = 13.32e6 S/m.
The results of the simulations with ERMES compared with measurements
and analytical formulas are shown in fig. 8. The rest of the configurations
consisted in three different copper tubes with one circular hole per meter.
The diameter of the hole in each tube was, respectively, dh = 15.875 mm,
dh = 9.525 mm and dh = 6.350 mm. All three tubes had the same external
diameter Dext = 31.750 mm and the same wall thickness T = 1.504 mm. It
was considered an electrical conductivity for copper of σ = 58e6 S/m. In fig.
9 are compared the results of the simulations with measurements and in fig.
10 the simulations and the measurements are compared with two different
analytical approaches.

The analytical results from Vance [30] were obtained using the formula

Zt =
γ

σ2πa (1− τ) sinh (γ T )
+ jωυ

µ0m

4π2a2
, (12)

where υ is the number of holes per unit length, m is the polarizability of each
hole, τ is the transparency of the shield and the remainder symbols represent
the same as in (11). The first term of (12) is equal to the transfer impedance
of a solid shield (11) except for the scalar factor (1−τ), which represents the
shield coverage. For a perforated shield containing υ uniformly distributed
circular holes, each with a radius rh, we have

τ = υ
r2
h

2a
. (13)

The second term in (12) is a mutual inductance that depends on the number
of openings υ in the shield and the polarizability m of each opening. For a
circle of radius rh, the polarizability is

m =
4r3

h

3
. (14)

The bad results given by (12) (see fig. 8 and fig. 10) are mainly due to the
implicit assumption made in (14) that the thickness of the shield T is small
compared to the radius rh of the circular apertures. On the other hand, in
the model proposed by Kley [7] the effect of a non-negligible thickness is
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considered. The expression provided in [7] for the transfer impedance of a
solid shield perforated with circular holes reads as follows:

Zt = ZR + υjωMLL + υ(1 + j)ωLSL, (15)

where ZR is the transfer impedance of a solid shield, MLL is the hole in-
ductance and LSL is the skin inductance. ZR is equal to the first term of
(12)

ZR =
γ

σ2πa (1− τ) sinh (γ T )
. (16)

MLL is obtained by multiplying the inductance of a hole with negligible
thickness by an attenuation factor due to the ”chimney effect”. The ap-
proximate formula for MLL is

MLL ≈ µ0
0.875 r3

h

3π2a2
exp

(−1.84 T

rh

)
. (17)

LSL models the effect of the eddy currents induced in the walls of the hole.
The approximate formula for LSL is

LSL ≈ Trh

2a2
exp

(−2.30 T

rh

)√
µ

2σω
. (18)

The notation used in (15), (16), (17) and (18) is the same as in (12) and
(11). In fig. 8 and fig. 10 is clearly observed the improvement introduced
by Kley (15) respect to Vance (12).

The measurements in fig. 8, fig. 9 and fig. 10 were carried out in [32].
The data provided in [32] for the tube with υ = 22 holes/meter (fig. 8) were
only Dext = 15.875 mm (5/8 in), dh = 3.175 mm (1/8 in) and the material
of the tube (brass, an alloy with an electrical conductivity between 10e6
S/m and 30e6 S/m). We deduced the thickness T and the conductivity
σ from the fig. 6 in [32], where the measured transfer impedance of the
same tube, but without holes, it is displayed. A T = 1.683 mm and a
σ = 13.32e6 S/m are obtained if we solve (11) with |Zt|1 KHz = 1 mΩ/m
and |Zt|100 KHz = 0.23 mΩ/m. A similar situation is found for the three
tubes with υ = 1 holes/meter (fig. 9 and fig. 10). The data provided in [32]
are Dext = 15.875 mm (1-1/4 in), dh = 15.875 mm (5/8 in), dh = 9.525 mm
(3/8 in), dh = 6.350 mm (1/4 in) and the material of the tubes (copper).
We accepted a conductivity for copper of σ = 58e6 S/m [14]. The thickness
is deduced from the fig. 2 in [32], where it is shown the transfer impedance
measured for the same tube but without hole. A T = 1.504 mm is obtained
if we solve (11) with |Zt|1 KHz = 0.12 mΩ/m.

22



4.3 Standard RG 58 coaxial cable tinned

The last validation example is the braided wire shield of a standard RG
58 coaxial cable in which the wires were fused together with a tin solder
dip [13]. The braided shield consists of C = 16 interwoven carriers, each
carrier having N = 7 copper wires with a diameter d = 0.12 mm. The
diameter of the shield is D = 3.5 mm. The angle between the cable direction
and the wires, the braid angle θ, is not provided in [13]. We derived θ by
considering that, in general, the optical coverage of a RG 58 is K = 0.95
(95%) and its filling factor is less than 1 (F < 1). The definition of the filling
factor F is [3]

F =
CNd

4πacos (θ)
, (19)

where C is the number of carriers, N is the number of wires per carrier, d
is the diameter of each wire, θ is the braid angle and a is the mean radius
of the shield (a = rint + d, where rint is the inner radius of the shield).
The filling factor F is related with the optical coverage K by means of the
equation

K = 2F − F 2. (20)

Imposing K = 0.95 and F < 1 in (20) gives F = 0.7764. If it is replaced
this value of F in (19) with C = 16, N = 7, d = 0.12 mm and a = 1.63 mm,
it is finally obtained the braid angle θ = 32.32o.

The analytical results by Vance [3] shown in fig. 11 and 12 were obtained
representing the diamond-shaped holes of fig. 3 as elliptical holes. The
expression of Zt in this case is similar to (12) but with

τ = υ
wele
8a

(21)

and

m =
πl3e
24

( (
1− e2

)
e2

E(e)− (1− e2) K(e)

)
, (22)

where le is the major axis of the equivalent elliptical hole, we is the minor
axis, e is the eccentricity

(
e =

√
1− (we/le)2

)
and K(e) and E(e) are the

complete elliptic integrals of the first and the second kind, respectively,
defined by

K(e) =
∫ π

2

0

1√
1− e2 sin2(ϕ)

dϕ,

E(e) =
∫ π

2

0

√
1− e2 sin2(ϕ) dϕ.

(23)
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Equation (22) is valid when θ < 45o. The parameters le, we and υ can be
deduced from the known values F , θ, N and d thanks to the relations [3]

υ = 4πa sin(θ) cos(θ)
(

F

Nd

)2

, (24)

le =
(1− F ) Nd

F sin(θ)
, (25)

we =
(1− F ) Nd

F cos(θ)
. (26)

The bad results given by the Vance in fig. 11 and fig. 12 can be attributed
to same reason as in the previous examples with circular holes, the non-
depreciable thickness of the shield to respect the size of the holes. Unfor-
tunately, we had not found available in the literature any adaptation of
the Kley’s model (15) to perforated solid tubes with diamond-shaped holes.
Hence, in fig. 11 and fig. 12, we employed (15) with rh =

√
lewe/4, that is,

we approximate the rhomboidal holes as circular and with the same area as
the equivalent elliptical hole. In this case, the bad results given by Kley’s
model can be attributed to a lack of a properly adaptation to the new cir-
cumstances.

To simulate with ERMES the tinned RG 58 cable we employed two
different geometrical models. The first one is shown in fig. 3 and the results
appear in fig. 11. We can see an excellent resemblance with measured data
for the high frequencies range. If we want to improve the accuracy for all
the frequencies it is necessary to refine our geometric model, as is done
in fig. 4. As can be seen in fig. 12, when using a more realistic model
the simulations and the measurements present a similar behavior in all the
frequency range. We must recall that the determination of the electrical
conductivity is an approximation (σ = 32.4e6 S/m, which is the average
between the conductivity of copper and the conductivity of tin) and this
makes also approximate the value of Zt in the low and medium frequency
range. On the other hand, at higher frequencies Zt is almost independent
of σ.

5 Conclusion

In this work we have presented a numerical model for the computation of
the transfer impedance of cable shields. This model has been validated on
some specific geometries comparing simulations with measurements. One
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of the advantages of the numerical approach is its flexibility and its ability
to deal with complex geometries and materials. Also, we had shown that
our numerical model reproduces more accurately the high frequency behav-
ior of the transfer impedance than the analytical approaches found in the
literature.

In a future work the same numerical model presented here will be applied
to a more real geometries where interwoven wires will be considered. The
numerical model developed for perforated tubes only needs minor changes
to be adapted to this situation. We only have to change the PEC and PMC
boundary conditions by periodic boundary conditions and use a different
minimum portion of the shield. The major difficulty in solving braided
wires rest in the generation of a computer aided design (CAD) geometry
ready to be used as input data for the finite element method. The genera-
tion of a braided wire CAD geometry is a time consuming task (more than
the computing time of the transfer impedance itself), this is why we are cur-
rently developing a computer tool able to generate automatically this kind
of geometry after being informed of the relevant parameters. This task is
very important if we want to apply the numerical model to the wide variety
of different braided wires shields available in the market or if we want to
design new ones.
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